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Abstract
Output-oriented plant capacity in a non-parametric framework is a concept that has been rather
widely applied since about twenty-five years. Conversely, input-oriented plant capacity in this
framework is a notion of more recent date. In this contribution, we unify the building blocks
needed for determining both plant capacity measures and define new graph or non-oriented
plant capacity concepts. We empirically illustrate the differences between these various plant
capacity notions using a secondary data set. This shows the viability of these new definitions
for the applied researcher.

Keywords Data envelopment analysis · Technology · Capacity utilization
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1 Introduction

The concept of plant capacity has been introduced in the economic literature by Johansen
(1968). Färe et al. (1989a, c) provide an operational way to measure this concept using a non-
parametric frontier framework focusing on a single output and multiple outputs, respectively.
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Plant capacity utilisation can then be determined from data on observed inputs and outputs by
computing a pair of output-oriented efficiencymeasures relative to a general specification of a
non-parametric frontier technology. This has led to a series of empirical applicationsmainly in
fisheries (e.g., Felthoven 2002) and in the health care sector (for instance, Karagiannis 2015).
There have also occurred some methodological refinements. One example is the inclusion of
this plant capacity notion in a decomposition of the Malmquist productivity index (see De
Borger and Kerstens 2000).

More recently, (Cesaroni et al. 2017) use the same non-parametric frontier framework
to define a new input-oriented measure of plant capacity utilisation based on a couple of
input-oriented efficiency measures. Furthermore, (Kerstens et al. 2019b) argue and illustrate
empirically that the output-oriented plant capacity utilization may be unrealistic because
the amounts of variable inputs needed to reach the maximum capacity outputs may not
be available. This relates to the so-called attainability issue described in Johansen (1968).
In response, Kerstens et al. (2019b) define a new attainable output-oriented plant capacity
utilization that bounds the available variable inputs.

First, we want to offer a brief review of the above developments in defining different plant
capacity notions. Second, we want to take a new methodological step and show how new
graph or non-oriented plant capacity concepts naturally follow from rewriting the existing
output- and input-oriented plant capacity utilisation notions. In particular, we make use of
a variation on the generalized Farrell graph efficiency measure that goes back to Färe et al.
(1985). It is also thefirst time these graph plant capacity notions are empirically applied. These
new plant capacity concepts are more general than the existing ones and provide new tools
for the applied researcher. In fact, it can be shown that these new graph or non-oriented plant
capacity concepts have a profit-like interpretation, just like the traditional output- and input-
oriented plant capacity notions are related to revenue maximization and cost minimization,
respectively.

This paper is structured as follows. Section 2 provides some basic definitions related
to the technology and its representation. Section 3 summarizes the existing output- and
input-oriented plant capacity utilisation notions and reports the similarities in the building
blocks needed for these plant capacity notions. In Sect. 4 we propose the new graph or
non-oriented plant capacity notions based on some existing graph or non-oriented efficiency
measures. We also establish some relations between these different plant capacity notions.
Section5develops a simple numerical example to illustrate the existing andnewplant capacity
notions within the simplest possible setting. Section 6 offers an empirical application using
a secondary data set. The final section concludes.

2 Technology: Basic Definitions

This section introduces some basic notation and defines the production technology. Given
an N -dimensional input vector x ∈ R

N+ and an M-dimensional output vector y ∈ R
M+ , for

every observed production unit k = 1, . . . , K the production possibility set or production
technology T is defined as follows: T = {(x, y) | x can produce at least y}. Associated with
technology T , the input set denotes all input vectors x capable of producing at least a given
output vector y: L(y) = {x | (x, y) ∈ T }. Analogously, the output set associated with
T denotes all output vectors y that can be produced from at most a given input vector x :
P(x) = {y | (x, y) ∈ T }.
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In this contribution, we assume that the production technology T satisfies some combi-
nation of the following standard assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if (0, y) ∈ T , then y = 0.
(T.2) T is a closed subset of RN+ × R

M+ .
(T.3) Strong input and output disposal, i.e., if (x, y) ∈ T and (x ′, y′) ∈ R

N+ × R
M+ , then

(x ′,−y′) ≥ (x,−y) ⇒ (x ′, y′) ∈ T .
(T.4) T is convex.

Briefly commenting on these traditional assumptions on the production technology, it
is useful to recall the following (see, e.g., Hackman 2008 for details). Inaction is feasible,
and there is no free lunch. Technology is closed. We assume strong or free disposability of
inputs and outputs in that inputs can be wasted and outputs can be discarded at no opportu-
nity costs. Finally, technology is convex. In our empirical analysis not all these axioms are
simultaneously maintained.1

The radial input efficiency measure characterizes the input set L(y) completely. It can be
defined as follows:

DFi (x, y) = min{θ | θ ≥ 0, θx ∈ L(y)} = min{θ | θ ≥ 0, (θx, y) ∈ T }. (1)

This radial input efficiency measure has the main property that it is smaller than or equal
to unity (DFi (x, y) ≤ 1), with efficient production on the boundary (isoquant) of L(y)
represented by unity. Furthermore, the radial input efficiencymeasure has a cost interpretation
(see, e.g., Hackman 2008).

The radial output efficiency measure offers a complete characterization of the output set
P(x) and can be defined as follows:

DFo(x, y) = max{ϕ | ϕ ≥ 0, ϕy ∈ P(x)} = max{ϕ | ϕ ≥ 0, (x, ϕy) ∈ T }. (2)

Its main properties are that it is larger than or equal to unity (DFo(x, y) ≥ 1), with efficient
production on the boundary (isoquant) of the output set P(x) represented by unity. In addition,
this radial output efficiency measure has a revenue interpretation (e.g., Hackman 2008).

In the short run, we can partition the input vector x into a fixed (x f ) and variable part (xv).

In particular, we denote x = (x f , xv)with x f ∈ R
N f
+ and xv ∈ R

Nv+ such that N = N f +Nv .
For convenience, we assume that all producers have the same subvectors of fixed and variable
inputs. Fixed inputs are impossible to adjust in the short run, while variable inputs are under
complete control of management (see Färe et al. 1994, Ch. 10). Alternative definitions of
input fixity can, e.g., be found in Rasmussen (2011, Ch. 12) who distinguishes between
physical and financial restrictions.

Similar to Färe et al. (1989c), a short-run technology T f = {(x f , y) ∈ R
N f
+ × R

M+ |
there exist some xv such that (x f , xv) can produce at least y} and the corresponding input

set L f (y) = {x f ∈ R
N f
+ | (x f , y) ∈ T f } and output set P f (x f ) = {y | (x f , y) ∈ T f }

can be defined. Note that technology T f is in fact obtained by a projection of technology

T ⊆ R
N+M+ into the subspace R

N f +M
+ (i.e., by setting all variable inputs equal to zero). By

analogy, the same applies to the input set L f (y) and the output set P f (x f ).
Denoting the radial output efficiency measure of the short-run output set P f (x f ) by

DF f
o (x f , y), this short-run output-oriented efficiency measure can be defined as follows:

DF f
o (x f , y) = max{ϕ | ϕ ≥ 0, ϕy ∈ P f (x f )} = max{ϕ | ϕ ≥ 0, (x f , ϕy) ∈ T f }. (3)

1 For example, note that the convex variable returns to scale technology need not satisfy inaction.
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The sub-vector input efficiency measure reducing only the variable inputs is defined as
follows:

DFSR
i (x f , xv, y) = min{θ | θ ≥ 0, (x f , θxv) ∈ L(y)}

= min{θ | θ ≥ 0, (x f , θxv, y) ∈ T }. (4)

This specification is mathematically equivalent to the work of Banker and Morey (1986).
Next, we need the following particular definition: L(0) = {x | (x, 0) ∈ T } is the input

set with zero output level. This is the input set indicating the input levels where non-zero
production is initiated.2 The sub-vector input efficiency measure reducing variable inputs
evaluated relative to this input set with a zero output level is as follows:

DFSR
i (x f , xv, 0) = min{θ | θ ≥ 0, (x f , θxv) ∈ L(0)}

= min{θ | θ ≥ 0, (x f , θxv, 0) ∈ T }. (5)

This sub-vector efficiency measure is defined with respect to the input set with zero output
level where production is initiated.3

For the applications in Sects. 5 and 6 respectively, we assume a convex non-parametric
frontier technology under the flexible or variable returns to scale assumption (VRS). Given
data on K observations (k = 1, . . . , K ) consisting of a vector of inputs and outputs (xk, yk) ∈
R

N+ × R
M+ , this technology can algebraically be represented by

T V RS =
{

(x, y) | x ≥
K∑

k=1

zk xk, y ≤
K∑

k=1

zk yk,
K∑

k=1

zk = 1 and zk ≥ 0

}
. (6)

The activity vector z of real numbers summing to unity represents the convexity axiom. The
convex technology satisfies axioms (T.1) (except inaction) to (T.4).

Commonly, it is assumed that the input and output data satisfy a series of conditions (Färe
et al. 1994, pp. 44–45): (i) each producer employs non-negative amounts of each input to
produce non-negative amounts of each output; (ii) there is an aggregate production of positive
amounts of every output as well as an aggregate utilization of positive amounts of every input;
and (iii) each producer employs a positive amount of at least one input to produce a positive
amount of at least one output.

3 Plant capacity concepts

3.1 Plant capacity concepts: a brief review of basic definitions

Recall the informal definition of plant capacity by Johansen (1968, p. 362) as “the maximum
amount that can be produced per unit of time with existing plant and equipment, provided
that the availability of variable factors of production is not restricted.” This clearly output-
oriented plant capacity notion has been admirably made operational by Färe et al. (1989a, c)

2 Note that L(0) can be equivalently defined by L(ymin) = {x | (x, ymin) ∈ T }, whereby ymin =
min

k=1,...,K
yk . Thus, the minimum is taken in a component-wise manner for every output y over all obser-

vations K .
3 This sub-vector input efficiency measure DFSR

i (x f , xv, 0) can be equivalently formulated as

DFSR
i (x f , xv, ymin), where ymin = min

k=1,...,K
yk whereby the minimum is taken in a component-wise

manner for every output over all observations.
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using a pair of output-oriented efficiency measures. We now recall the definition of this
output-oriented plant capacity utilization.

Definition 3.1 The output-oriented plant capacity utilization PCUo is defined as follows:

PCUo(x, x
f , y) = DFo(x, y)

DF f
o (x f , y)

,

where DFo(x, y) and DF f
o (x f , y) are output efficiency measures including, respectively

excluding, the variable inputs as defined before in (2) and (3).

Since 1 ≤ DFo(x, y) ≤ DF f
o (x f , y), notice that 0 < PCUo(x, x f , y) ≤ 1. Thus,

output-oriented plant capacity utilization has an upper limit of unity. Following the terminol-
ogy introduced by Färe et al. (1989a), one can distinguish between a so-called biased plant
capacity measure DF f

o (x f , y) and an unbiased plant capacity measure PCUo(x, x f , y)
depending on whether the measure ignores inefficiency or adjusts for the eventual existence
of inefficiency. Taking the ratio of efficiency measures eliminates any existing inefficiency
and yields in this sense a cleaned concept of output-oriented plant capacity. This output-
oriented plant capacity utilisation compares the maximum amount of outputs with given
inputs to the maximum amount of outputs in the sample with potentially unlimited amounts
of variable inputs. It answers the question how the current amount of efficient outputs relates
to the maximal possible amounts of efficient outputs.

More recently Yang and Fukuyama (2018) and Yang et al. (2019) provide an equivalent
definition of PCUo(x, x f , y) using an output-oriented directional distance function: it is
well-known that the above radial output-oriented efficiencymeasures can be related to similar
output-oriented directional distance functions (see Färe and Grosskopf 2000 for details). The
originality of their approach is that these authors also distinguish between good and bad
outputs: the good outputs are expanded, while the bad outputs are reduced.

Recently, Kerstens et al. (2019b) have argued and empirically illustrated that the output-
oriented plant capacity utilization PCUo(x, x f , y) may be unrealistic in that the amounts of
variable inputs needed to reach the maximum capacity outputs may simply be unavailable
at either the firm or the industry level. This is linked to what (Johansen 1968) called the
attainability issue. Hence, Kerstens et al. (2019b) define a new attainable output-oriented
plant capacity utilization at the firm level as follows:

Definition 3.2 An attainable output-oriented plant capacity utilization APCUo at level λ̄ ∈
R+ is defined by

APCUo(x, x
f , y, λ̄) = DFo(x, y)

ADF f
o (x f , y, λ̄)

,

where the attainable output-oriented efficiency measure ADF f
o at a certain level λ̄ ∈ R+ is

defined by

ADF f
o (x f , y, λ̄) = max{ϕ | ϕ ≥ 0, 0 ≤ θ ≤ λ̄, ϕy ∈ P(x f , θxv)}

= max{ϕ | ϕ ≥ 0, 0 ≤ θ ≤ λ̄, (x f , θxv, ϕy) ∈ T }. (7)

Again, for λ̄ ≥ 1, since 1 ≤ DFo(x, y) ≤ ADF f
o (x f , y, λ̄), notice that 0 <

APCUo(x, x f , y, λ̄) ≤ 1. Also, for λ̄ < 1, since 1 ≤ ADF f
o (x f , y, λ̄) ≤ DFo(x, y),

notice that 1 ≤ APCUo(x, x f , y, λ̄). Kerstens et al. (2019b) pragmatically experiment with
values of λ̄ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Furthermore, these authors note that if
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expert opinion cannot determine a plausible value, then it may be better to opt for the next
input-oriented plant capacity measure that does not suffer from the attainability issue.

This attainable output-oriented plant capacity utilisation compares the maximum amount
of outputs with given inputs to the maximum amount of outputs in the sample with amounts
of variable inputs scaled by λ̄. It answers the question how the current amount of efficient
outputs relates to the maximal possible amounts of efficient outputs as determined by the
scalar λ̄.

Cesaroni et al. (2017) define a new input-oriented plant capacity measure using a pair of
input-oriented efficiency measures.

Definition 3.3 The input-oriented plant capacity utilization (PCUi ) is defined as follows:

PCUi (x, x
f , y) = DFSR

i (x f , xv, y)

DFSR
i (x f , xv, 0)

,

where DFSR
i (x f , xv, y) and DFSR

i (x f , xv, 0) are the sub-vector input efficiency measures
defined in (4) and (5), respectively.

Since 0 < DFSR
i (x f , xv, 0) ≤ DFSR

i (x f , xv, y), notice that PCUi (x, x f , y) ≥ 1.
Thus, input-oriented plant capacity utilization has a lower limit of unity. Similar to the
previous case, one can distinguish between a so-called biased plant capacity measure
DFSR

i (x f , xv, 0) and an unbiased plant capacity measure PCUi (x, x f , y), the latter being
cleaned of any prevailing inefficiency. This input-oriented plant capacity utilisation compares
the minimum amount of variable inputs for given amounts of outputs with the minimum
amount of variable inputs with output levels where production is initiated. It answers the
question how the amount of variable inputs compatible with the initialisation of production
must be scaled up to produce the current amount of outputs.

We end this brief reviewby pointing out two further sources of information. First, graphical
illustrations of all plant capacity concepts are provided in online supplementary material A.
Second, full details on the linear programming models to solve for all of these plant capacity
concepts is found in online supplementary material B.1.

3.2 Plant capacity concepts: a digression

The purpose is now to develop a bottom-up approach whereby we start from the structure of
the above existing output- and input-oriented plant capacity utilization concepts to develop a
framework for new graph plant capacity utilization concepts. The following Proposition 3.1
presents a first new result. It shows that the building blocks needed for calculating the amount
of PCUo(x, x f , y) and PCUi (x, x f , y) can be expressed in similar models (i.e., maximiza-
tion for output-orientation andminimization for input-orientation) using the same constraints
but with different objective functions and different bounds on the decision variables.

Proposition 3.1 (i) The short-run output-oriented radial technical efficiency measure
DF f

o (x f , y) from model (3) is equivalently solved as follows:

DF f
o (x f , y) = max{ϕ | θ ≥ 0, ϕ ≥ 0, (x f , θxv, ϕy) ∈ T }, (8)

whereby θ ≥ 0 allows to expand the observed variable inputs.
(ii) The short-run input-oriented efficiency measure reducing variable inputs evaluated rel-

ative to the input set with a zero output level (DFSR
i (x f , xv, 0)) from model (5) is

equivalently solved as follows:
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DFSR
i (x f , xv, 0) = min{θ | θ ≥ 0, ϕ ≥ 0, (x f , θxv, ϕy) ∈ T }, (9)

whereby ϕ ≥ 0 allows for an adjustment of the observed outputs.
iii) The output-oriented technical efficiency measure DFo(x, y) from model (2) is equiva-

lently solved as follows:

DFo(x, y) = max{ϕ | θ ≤ 1, ϕ ≥ 1, (x f , θxv, ϕy) ∈ T }, (10)

whereby θ ≤ 1 allows to contract the observed variable inputs.
iv) The input efficiency measure reducing only the variable inputs (DFSR

i (x f , xv, y)) from
model (4) is equivalently solved as follows:

DFSR
i (x f , xv, y) = min{θ | θ ≤ 1, ϕ ≥ 1, (x f , θxv, ϕy) ∈ T }, (11)

whereby ϕ ≥ 1 allows for an adjustment of the observed outputs.

Proof See online supplementary material C. �	
Wecanmake the following remarks regarding this first new result. Although these remarks

aremore general by nature, itmight be useful checking out the correspondingmodels in online
supplementary material B assuming the convex non-parametric technology T V RS [see (6)].
First, it is important to understand that in these new formulations, expressions (8)–(11) all
use the same constraints (i.e., (x f , θxv, ϕy) ∈ T ). In the cases of output-orientation, maxi-
mization is needed while input-orientation requires minimization. Also notice the difference
in the objective functions (i.e., ϕ in the case of output-orientation and θ for input-orientation).
In particular, model (8) aims to maximize the outputs by releasing the variable inputs, while
model (9) aims to minimize the variable inputs by releasing the outputs. The same result
holds true for models (10) and (11).

Second, notice that models (8) and (10) are identical except for the bounds applied to
the decision variables θ and ϕ. For DF f

o (x f , y), we have θ ≤ 1 and ϕ ≥ 1 that prevent to
increase the inputs and decrease the output components, while for DFo(x, y), we have θ ≥ 0
and ϕ ≥ 0. The same result holds true for models (9) and (11).

Third, note that in the new formulation of DFSR
i (x f , xv, 0) [i.e., model (9)], the right-

hand side of the output constraints is not zero. In fact, this model aims to obtain the minimum
amount of variable inputs such that the outputs are not restricted.

Since the input- and output-oriented plant capacity utilisation concepts share the same
structure, we are now in a position to extend these notions to the full space of inputs and
outputs by defining proper graph plant capacity utilization concepts.

4 Graph efficiencymeasurement and plant capacity utilisation

4.1 New developments

Methodological research on efficiency (or inefficiency) measurement has early on focused
on measurement in the full space of inputs and outputs, which has been referred to as “graph
efficiency” measurement in the seminal book by Färe et al. (1985). An extensive survey of
such graph or non-oriented efficiencymeasures is provided by Russell and Schworm (2011).4

4 A survey of similar input-oriented efficiency measures can be found in the earlier article of Russell and
Schworm (2009).
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Färe et al. (1985, pp. 110–111) define the hyperbolic efficiency index by

EH (x, y) = max{θ | (θ−1x, θ y) ∈ T }, (12)

which can be considered as the first formulation of an efficiency index in the full input and
output space. This index contracts inputs and expands outputs along a (particular) hyperbolic
path to the frontier and maps into the [1,∞) interval. This hyperbolic graph efficiency
measure (12) extends the analysis of the radial input- and output-oriented efficiencymeasures
by allowing for the adjustment of both inputs and outputs in the measurement of efficiency.
However, this hyperbolic graph efficiency measure is rather restrictive since it constrains
the search for more efficient production plans to a hyperbolic path along which all inputs
are reduced and all outputs are increased in the same proportion. Färe et al. (2002) show
that the hyperbolic graph efficiency measure can be given a ratio-based return to the dollar
interpretation.5

Under constant returns to scale (CRS), Färe et al. (2002) show that this hyperbolic effi-

ciency index is equal to both DFi (x, y)
1
2 and DFo(x, y)−

1
2 (i.e., the conventional output-

and input-oriented distance functions that can be solved using standard linear programming
(LP) techniques). But, under VRS, the hyperbolic efficiency index may not be obtained by
solving an LP-problem. To linearise this problem, Färe et al. (1989b) introduce a linear
approximation of the non-linear set of constraints. However, Zofío and Lovell (2001) and
Zofío and Prieto (2001) show that this approximation is only acceptable close to the efficient
frontier. Hence, when a unit becomes more inefficient the approximation worsens. To resolve
the linearisation problem of the hyperbolic distance function under VRS, Färe et al. (2016)
propose an LP-based computational algorithm for estimating the exact value of the hyper-
bolic graph efficiency measure by connecting it to the directional distance function proposed
by Chambers et al. (1998). We refer to Sect. 4.2 for more information concerning this direc-
tional distance function. Further computational results for the hyperbolic efficiency index are
developed in the recent contributions of Halická and Trnovská (2019) and Hasannasab et al.
(2019).

Starting from Färe et al. (1985, p. 126) one can define the generalized Farrell graph
efficiency measure as follows:

EFGL (x, y) = max

{
ϕ + θ

2
| θ ≥ 0, ϕ ≥ 0, (θ−1x, ϕy) ∈ T

}
. (13)

Proposition 4.1 Even for strongly efficient units, EFGL(x, y) can be strictly greater than 1.
However, if the constraints θ ≥ 1 and ϕ ≥ 1 are added to model (13), then for all strongly
efficient units EFGL(x, y) = 1.

Proof See online supplementary material C. �	
Based on the Proposition 4.1, we modify and relabel model (13) as follows:

EFGL(x, y) = max

{
ϕ + θ

2
| θ ≥ 1, ϕ ≥ 1, (θ−1x, ϕy) ∈ T

}
. (14)

Note that EFGL(x, y) is larger than or equal to unity. This generalization of the hyperbolic
efficiency measure permits the proportional reduction in all inputs to differ from the propor-
tional increase in all outputs when searching for a more efficient production plan. Färe et al.

5 See Halická and Trnovská (2019) for more historical details and for new duality results.
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(1985, p. 154) also define the non-radial Russell graph measure of technical efficiency by
decreasing inputs and increasing outputs in a non-radial way. In this formulation, they do
consider the constraints θi ≥ 1 and ϕr ≥ 1 similar to θ ≥ 1 and ϕ ≥ 1 in (14). Halická
and Trnovská (2018, pp. 391 and 395) show that model (14) in both its radial and non-radial
variations can be interpreted as a shadow optimal profit.

A practical difficulty with this measure (14) is that it must be computed from a non-
linear programming problem whose solution is not easily obtained. Therefore, we propose
the alternative graph efficiency measure

EG(x, y) = max
{ϕ

θ
| θ ≤ 1, ϕ ≥ 1, (θx, ϕy) ∈ T

}
, (15)

which, although closely related, avoids this difficulty. Instead of combining input and output
radial measures in an additive way [see expression (14)], we now define the graph efficiency
measure as the ratio between these input and output component measures. This model (15)
has a profit interpretation (see online supplementary material B for details).

Contrary to EFGL(x, y), EG(x, y) can more easily be computed since it requires solv-
ing an ordinary linear fractional programming problem which can be achieved using linear
programming by applying the Charnes and Cooper (1962) transformation (see online sup-
plementary material B for details)6

Using the same structure, the sub-vector graph efficiency measure E f
G(x f , xv, y) is

defined by

E f
G(x f , xv, y) = max

{ϕ

θ
| θ ≤ 1, ϕ ≥ 1, (x f , θxv, ϕy) ∈ T

}
. (16)

It simultaneously reduces all variable inputs and expands all outputs.
The sub-vector graph efficiency measure ESR

G (x f , xv, y) defined by

ESR
G (x f , xv, y) = max

{ϕ

θ
| θ ≥ 0, ϕ ≥ 0, (x f , θxv, ϕy) ∈ T

}
, (17)

gives complete freedom to adjust both the variable inputs as well as the outputs. Notice that
models (16) and (17) are identical except for the bounds on the decision variables ϕ and θ .

Both efficiency measures E f
G(x f , xv, y) and ESR

G (x f , xv, y) aim to maximize the ratio
of changes in outputs over changes in variable inputs. But, the main difference between these
efficiency measures is as follows. In the efficiency measure E f

G(x f , xv, y), the output com-
ponents increase and the variable inputs decrease, while in the short-run efficiency measure
ESR
G (x f , xv, y) both variable inputs and output components are allowed to adjust in a flexible

way.
Note that if the variable ϕ is ignored in the objective function of models (16) and (17)

determining E f
G(x f , xv, y) and ESR

G (x f , xv, y), we then obtain the reciprocal of the effi-
ciency measures DFSR

i (x f , xv, y) and DFSR
i (x f , xv, 0), determined by models (11) and

(9), respectively. Similarly, if the variable θ is ignored in the objective function of mod-
els (16) and (17), we then obtain the efficiency measures DFo(x, y) and DF f

o (x f , xv, y),
determined by models (10) and (8), respectively.

We now introduce different graph plant capacity notions using the above defined input-
oriented, output-oriented and graph efficiency measures.

6 Note that Pastor et al. (1999) proceed in a similar way to transform the non-linear part of the non-radial
Russell graph measure proposed by Färe et al. (1985, p. 154). Thereafter, Tone (2001) extends this proposal
into the so-called slack-basedmeasure (SBM). Sueyoshi and Sekitani (2007, Theorem 1) prove that a nonradial
version of EG (x, y) is less than or equal to the nonradial version of EFGL (x, y).
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Definition 4.1 The graph non-oriented plant capacity utilization GPCU is defined as fol-
lows:

GPCU (x, x f , y) = E f
G(x f , xv, y)

ESR
G (x f , xv, y)

. (18)

Note that GPCU (x, x f , y) ≤ 1 since 0 < E f
G(x f , xv, y) ≤ ESR

G (x f , xv, y). Thus, graph
non-oriented plant capacity utilization has an upper limit of unity, but no lower limit.

It is important to realize that the denominators of the output-, input-, and graph-oriented
plant capacity utilization measures in Definitions 3.1, 3.3 and 4.1 have different returns
to scale characteristics. First, the output-oriented efficiency measure DF f

o (x f , y) adjusts
the variable inputs to obtain the maximum amount of outputs. The target point obtained
from it has decreasing return to scale (DRS). Second, the input-oriented efficiency measure
DFSR

i (x f , xv, 0) adjusts the outputs to obtain the minimum amount of variable inputs.
Therefore, the obtained target points by solving this model DFSR

i (x f , xv, 0) has increasing
return to scale (IRS). Finally, the new graph efficiency measure ESR

G (x f , xv, y) adjusts both
variable inputs and outputs to obtain the maximum ratio of changes in outputs over changes
in variable inputs. The target point obtained from it has constant returns to scale (CRS) or the
most productive scale size (mpss).7 As can be seen in Fig. 1 in the numerical example in Sect. 5
below, the target points obtained by solving the models for DF f

o (x f , y), DFSR
i (x f , xv, 0)

and ESR
G (x f , xv, y) are located on the DRS, IRS and CRS (or mpss) part of the efficient

frontier.
This graph non-oriented plant capacity utilization compares the maximum amount of a

ratio of outputs over variable inputs by expanding the outputs and contracting the variable
inputs (i.e., by moving into the dominating region of the evaluated unit) to the maximum
amount of a ratio of outputs over variable inputs in the sample with potentially unlimited
amounts of both outputs and variable inputs, whence it is smaller than unity. It answers the
question of how the current amount of efficient ratio of outputs over variable inputs relates
to the maximum possible amount of the efficient ratio of outputs over variable inputs (see
online supplementary material D for more details).

We have by definition no limitations on the available amounts of variable inputs for
the original output-oriented plant capacity utilisation PCUo(x, x f , y). However, in some
empirical settings this is not realistic and we have to limit the amount of variable inputs
available at either the firm or the industry level (see Kerstens et al. 2019b for details). One
way to limit the amounts of variable inputs is as follows. It may be reasonable that the
amount of increase in the variable inputs is proportional to the increase in the amount of
outputs. Hence, we can define an output-oriented plant capacity utilisation in graph space by
considering the changes of inputs.

7 Banker (1984, p. 37) states: “the mpss for a given input and output mix is the scale size at which the outputs
produced ‘per unit’ of the inputs is maximized. Thus, a production possibility (x, y) ∈ T represents a mpss if
and only if for all production possibilities (βX , αY ) ∈ T we have α

β ≤ 1.” The model introduced by Banker
(1984) for determining mpss is as follows:

max

{
α

β
|β ≥ 0, α ≥ 0, (βX , αY ) ∈ T

}
. (19)

Note that by decomposing inputs into their fixed and variable components, the above mpss model (19) can be
written as model (17): i.e., ESR

G (x f , xv, y).
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This graph output-oriented plant capacity utilization can now be defined as follows:

Definition 4.2 The graph output-oriented plant capacity utilization GPCUo is defined as
follows:

GPCUo(x, x
f , y) = DFo(x, y)

GDFSR
o (x f , xv, y)

, (20)

where GDFSR
o (x f , xv, y) is the optimal value of ϕ in model (17).

Note thatGPCUo(x, x f , y)
>=
<
1 since DFo(x, y)

>=
<
GDFSR

o (x f , xv, y). This lack of bound

may create some difficulties in interpretation. If researchers prefer boundedness, then we
recommend to use the traditional or attainable output-oriented plant capacity measure (Def-
inition 3.1 or Definition 3.2). This graph output-oriented plant capacity utilization GPCUo

compares the maximum amount of outputs with given inputs to the maximum amount of out-
puts with input levels where production is an mpss. It answers the question how the amount
of outputs compatible with the mpss production must be scaled down or up to be compatible
with the current amount of inputs (see online supplementary material D for more details).

As already mentioned in Sect. 3, the original output-oriented plant capacity utilization
PCUo suffers from the attainability issue. Hence, Kerstens et al. (2019b) introduce APCUo

(see Definition 3.2) by imposing bounds on the availability of its variable inputs in a general
way. Definition 4.2 can also provide another approach to solve the attainability issue. In fact,
if we ignore the variable θ in the objective function of model (17), then GPCUo(x, x f , y)
becomes PCUo(x, y). Actually, the variable θ in the objective function prevents an increase
of the variable inputs and allows the variable inputs to increase only as far as the ratio of
changes in outputs over changes of variable inputs is maximized. However, in the following
proposition, we show that GPCUo is a special case of APCUo.

Proposition 4.2 Assume that θ∗ is the optimal value of θ in model (17). Then, we have:

i) GDFSR
o (x f , xv, y) = ADF f

o (x f , y, θ∗);
ii) GPCUo(x, x f , y) = APCUo(x, x f , y, θ∗).

Proof See online supplementary material C. �	
Proposition 4.2 shows that if we use the attainable level λ̄ = θ∗, then the graph

output-oriented and the attainable output-oriented plant capacity utilization concepts offer
the same results. Also, since the obtained target of ESR

G (x f , xv, y) is an mpss, then the

obtained target from ADF f
o (x f , y, λ̄) at a certain level λ̄ = θ∗ is also an mpss. Note that

APCUo(x, x f , y, λ̄) depends on the attainable level λ̄ that is determined by the decision
maker. But, in some situations he or she may not be able to determine this attainability level.
Therefore, the defined attainability in Definition 4.2 can offer a good choice to determine
some reasonable bound on available variable inputs, because the attainable output-oriented
efficiency measure ADF f

o (x f , y, λ̄) at a certain level λ̄ = θ∗ yields an mpss target.
In a similar way, the graph input-oriented plant capacity utilization can be defined as:

Definition 4.3 The graph input-oriented plant capacity utilization (GPCUi ) is defined as
follows:

GPCUi (x, x
f , y) = DFSR

i (x f , xv, y)

GDFSR
i (x f , xv, y)

, (21)

where GDFSR
i (x f , xv, y) is the optimal value of θ in model (17).
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Note thatGPCUi (x, x f , y)
>=
<
1 since DFSR

i (x f , xv, y)
>=
<
GDFSR

i (x f , xv, y). This lack of

bound complicates its interpretation. If one prefers a bounded version, then we recommend to
use the traditional input-oriented plant capacity measure (Definition 3.3). This graph input-
oriented plant capacity utilizationGPCUi compares the minimum amount of variable inputs
for given amounts of outputs with the minimum amount of variable inputs with output levels
where production is an mpss. It answers the question how the amount of variable inputs
compatible with the mpss production must be scaled down or up to produce the current
amount of outputs (see online supplementary material D for more details).

Proposition 4.3 The following relations between the original graph as well as the special
case graph output- and graph input-oriented plant capacity utilization notions as well as
their components can be established:

(i) DFSR
i (x f , xv, 0) ≤ GDFSR

i (x f , xv, y) ≤ GDFSR
o (x f , xv, y) ≤ DF f

o (x f , y);
(ii) PCUo(x, x f , y) ≤ GPCUo(xv, x f , y);
(iii) GPCUi (xv, x f , y) ≤ PCUi (xv, x f , y).

(iv) GPCU (x, x f , y)
>=
<
GPCUo(x, x f , y)

>=
<
GPCUi (x, x f , y)

(v) GPCU (x, x f , y) ≤ PCUi (xv, x f , y)

(vi) GPCU (x, x f , y)
>=
<
PCUo(x, x f , y) and GPCU (x, x f , y)−1 ≥ PCUo(x, x f , y).

Proof See online supplementary material C. �	
Note that GPCU (x, x f , y) is in general different from its special input- and output-

oriented graph versions GPCUi (x, x f , y) and GPCUo(x, x f , y), respectively. Fur-
thermore, GPCU (x, x f , y) is also distinct from the traditional input- and output-
oriented plant capacity concepts PCUi (x, x f , y) and PCUo(x, x f , y), respectively. Finally,
GPCUi (x, x f , y) and GPCUo(x, x f , y) differ in general from PCUi (x, x f , y) and
PCUo(x, x f , y), respectively.

4.2 Link to graph capacity measures based on directional distance functions

The directional distance function ED(x, y, gx , gy) proposed by Chambers et al. (1998) is
defined by

ED(x, y; gx , gy) = max{β | (x − βgx , y + βgy) ∈ T }. (22)

This distance function simultaneously seeks to expand outputs and contract inputs in the
direction of the vector (−gx , gy) ∈ R

N− ×R
M+ . The latter directional vector determines how

the input-output vector (x, y) is projected onto the boundary of T at (x − β∗gx , y + β∗gy),
whereby β∗ = ED(x, y; gx , gy).8

Partitioning the input vector x into fixed x f and variable xv , the sub-vector directional
distance function is defined by

ESR
D (xv, x f , y; gxv , gy) = max{β | (x f , xv − βgxv , y + βgy) ∈ T }. (23)

Based onmodels (22) and (23), we define the directional plant capacity utilization DPCU
as follows:

8 See Russell and Schworm (2011) for an almost complete overview of graph or non-oriented efficiency
measures, including the directional distance function.
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Definition 4.4 The directional plant capacity utilization DPCU is defined as follows:

DPCU (x f , xv, y; gx f , gx , gy) = ED(x, y; gx , gy)
ESR
D (xv, x f , y; gxv , gy)

, (24)

where ED(x, y; gx , gy) and ESR
D (xv, x f , y; gxv , gy) are directional efficiency measures

including respectively excluding the variable inputs as defined in (22) and (23).

Färe and Grosskopf (2000) are the first to use the directional distance function as a tool for
defining a theoretical graph-oriented plant capacity utilization indicator. Färe and Grosskopf
(2000) define the directional distance function when the variable inputs are unrestricted as
follows:

ESR
D (x f , y; gx f , gy) = max{β | (x f − βgx f , xv, y + βgy) ∈ T , xv ≥ 0.}. (25)

In fact, they expand the outputs and contract the fixed inputs in the graph-oriented plant
capacitymeasure using the directional distance function. This leads to the following definition
of the directional plant capacity utilization DPCUFG :

Definition 4.5 The directional plant capacity utilization DPCUFG is defined as follows:

DPCUFG(x f , xv, y; gx f , gx , gy) = ED(x, y; gx , gy)
ESR
D (x f , y; gx f , gy)

, (26)

where ED(x, y; gx , gy) and ESR
D (x f , y; gx f , gy) are directional efficiency measures includ-

ing and excluding the variable inputs as defined in (22) and (25) respectively.

Note that the definitions of the directional plant capacity utilization DPCU and DPCUFG

differ slightly from the original definition in Färe and Grosskopf (2000) in that no unity is
added to both numerator and denominator. Note furthermore that the numerator of the direc-
tional plant capacity utilizations concepts (24) and (26) is the same and the only difference
between these is in the denominator, where our proposed method uses (23) and the Färe and
Grosskopf (2000) method applies (25).

We now show in the following propositions that the building blocks needed for comput-
ing all plant capacity measures hitherto defined in this contribution can be obtained from
the directional distance functions ED(x, y; gx , gy) and ESR

D (xv, x f , y; gxv , gy) in (24) by
choosing appropriate direction vectors. For the proofs, we refer to online supplementary
material C.

Proposition 4.4 Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the following
model:

DF f
o (x f , y) = max

{
ϕ | θ ≥ 0, ϕ ≥ 0, (x f , θxv, ϕy) ∈ T

}
. (27)

Letting

gxv = (1 − θ∗)
DF f

o (x f , y)
xv, and

gy = (ϕ∗ − 1)

DF f
o (x f , y)

y,

then DF f
o (x f , y) = ESR

D (xv, x f , y; gxv , gy).
Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR

D (xv, x f , y; gxv , gy) = 1.
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Proposition 4.5 Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the following
model:

DFo(x, y) = max
{
ϕ | θ ≤ 1, ϕ ≥ 1, (x f , θxv, ϕy) ∈ T

}
. (28)

Letting

gxv = (1 − θ∗)
DFo(x, y)

xv, and

gy = (ϕ∗ − 1)

DFo(x, y)
y,

then DFo(x, y) = ESR
D (xv, x f , y; gxv , gy).

Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR
D (xv, x f , y; gxv , gy) = 1.

Proposition 4.6 Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the following
model:

DFSR
i (x f , xv, 0) = min{θ | θ ≥ 0, ϕ ≥ 0, (x f , θxv, ϕy) ∈ T }. (29)

Letting

gxv = (1 − θ∗)
DFSR

i (x f , xv, 0)
xv, and

gy = (ϕ∗ − 1)

DFSR
i (x f , xv, 0)

y,

then DFSR
i (x f , xv, 0) = ESR

D (xv, x f , y; gxv , gy).
Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR

D (xv, x f , y; gxv , gy) = 1.

Proposition 4.7 Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the following
model:

DFSR
i (x f , xv, y) = min{θ | θ ≤ 1, ϕ ≥ 1, (x f , θxv, ϕy) ∈ T }. (30)

Letting

gxv = (1 − θ∗)
DFSR

i (x f , xv, y)
xv, and

gy = (ϕ∗ − 1)

DFSR
i (x f , xv, y)

y,

then DFSR
i (x f , xv, y) = ESR

D (xv, x f , y; gxv , gy).
Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR

D (xv, x f , y; gxv , gy) = 1.

Proposition 4.8 Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the following
model:

E f
G(x f , xv, y) = max{ϕ

θ
| θ ≤ 1, ϕ ≥ 1, (x f , θxv, ϕy) ∈ T }. (31)

Letting

gxv = (1 − θ∗)
E f
G(x f , xv, y)

xv, and
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gy = (ϕ∗ − 1)

E f
G(x f , xv, y)

y,

then E f
G(x f , xv, y) = ESR

D (xv, x f , y; gxv , gy).
Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR

D (xv, x f , y; gxv , gy) = 1.

Proposition 4.9 Assume that (θ∗, ϕ∗) is an optimal solution obtained by solving the following
model:

ESR
G (x f , xv, y) = max{ϕ

θ
| θ ≥ 0, ϕ ≥ 0, (x f , θxv, ϕy) ∈ T }. (32)

Letting

gxv = (1 − θ∗)
ESR
G (x f , xv, y)

xv, and

gy = (ϕ∗ − 1)

ESR
G (x f , xv, y)

y,

then ESR
G (x f , xv, y) = ESR

D (xv, x f , y; gxv , gy).
Note that if (θ∗, ϕ∗) = (1, 1), then we put ESR

D (xv, x f , y; gxv , gy) = 1.

In Propositions 4.5, 4.7 and 4.8, gxv and gy are non-negative: therefore, the variable inputs

and outputs adjust in the direction of (−gxv , gy) ∈ R
Nv− × R

M+ . In Proposition 4.6, gxv is

non-negative and gy is non-positive: i.e., the direction vector is (−gxv , gy) ∈ R
Nv− ×R

M− . In
Proposition 4.4, gy is non-negative, but gxv can sometimes be negative: hence, in this case the
direction vector is (−gxv , gy) ∈ R

Nv ×R
M+ . In Proposition 4.9, gxv and gy can sometimes be

positive or negative: therefore, in this case the direction vector is (−gxv , gy) ∈ R
Nv × R

M .
Therefore, onemay consider the graph-oriented plant capacity utilization indicator (24) based
on the directional distance functions (22) and (23) as a special case of the traditional output-
and input-oriented plant capacity measures as well as our new graph-oriented plant capacity
utilization index (18).

However, we are rather critical about the graph-oriented plant capacity utilization indicator
(26) based on the directional distance functions proposed by Färe and Grosskopf (2000) [i.e.,
(25)]. Our proposed method (23) has two main differences with the Färe and Grosskopf
(2000) method (25). First, in our method we can adjust (contract and expand) the outputs as
well as the variable inputs, while the Färe and Grosskopf (2000) method expands the outputs
and contracts the fixed inputs. However, adjusting fixed inputs is in principle impossible
(unless one adopts an alternative, more flexible definition of input fixity), while variable
inputs are under the control of management.9 Hence, it seems that adjusting variable inputs
is more reasonable than contracting fixed inputs. Therefore, the obtained targets from our
method are more acceptable for decision makers.

Second, in model (25) proposed by Färe and Grosskopf (2000) both fixed and variable
inputs can adjust, while our proposed model (23) adjusts only the variable inputs. In fact,
in the Färe and Grosskopf (2000) method (25), xv is a decision variable such that it is non-
negative (xv ≥ 0). Therefore, at optimality, it can be increased or decreased from its existing
level, and the fixed inputs adjust in the direction of gx f . But, our model only adjusts the
variable inputs in the direction of gxv (depending on the precise sign of this direction vector)

9 Note that Yang and Fukuyama (2018) offer an output-oriented plant capacity notion with a directional
distance function, but do not consider reductions in fixed inputs.
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while the fixed inputs do not change. Note that in the Färe and Grosskopf (2000) model
(25), one cannot select a suitable direction to reach the target of the input-oriented efficiency
measure DFSR

i (x f , xv, 0), while our model can cover this input-oriented efficiency measure
as well: therefore, it is more general.

5 Numerical example

We illustrate the ease of implementing these new graph plant capacity definitions by using a
small example of artificial data. We refer to online supplementary material B for an overview
on how to compute the necessary components of the plant capacity notions assuming a convex
non-parametric technology under VRS. Table 1 contains 16 fictitious observations with two
inputs generating a single output: one input is variable, the other one is fixed.

The results of the traditional input- and output plant capacity measures and their compo-
nents are reported in Table 2. Observe that the observations with a unit value for PCUi (.) and
PCUo(.) are different in general: solely observations 4, 5 and 7 have a unity plant capacity
in both cases. This confirms that both these plant capacity measures evaluate different things.

The results of the new graph plant capacity concept GPCU (x, x f , y) as well as its
special input- and output-oriented graph versions GPCUi (x, x f , y) and GPCUo(x, x f , y)
are reported in Table 3. This same table also contains their respective component efficiency
measures. Observe that observations 1, 5 and 14 with a unit value for GPCU (x, x f , y) have
different values for GPCUi (x, x f , y) and GPCUo(x, x f , y). By contrast, observations 4,
6-7, 9 and 11 are unity for all three graph capacity notions. For the observations which are
different from unity, all three graph capacity notions in general differ.

Figure 1 shows the (xv, y)-combinations determined by the optimal solutions of those
models needed for computing PCUi(.), PCUo(.) and GPCU (.) applied to observation
12 (black solid circle). The values mentioned below can be found in Tables 2 and 3 except

Table 1 Numerical example of
16 fictitious observations Observations xv x f y

1 7 6 2

2 3 5 2

3 5 4 3

4 6 3 3

5 7 4 3

6 4 9 4

7 11 3 4

8 5 6 4

9 6 3 4

10 6 7 5

11 5 8 5

12 8 6 5

13 10 5 5

14 6 10 6

15 7 8 6

16 10 7 6
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Table 2 Input- and output-oriented plant capacity utilization and components

PCUi (.) PCUo(.)

DFSR
i (x f , xv, y) DFSR

i (x f , xv, 0) PCUi (.) DFo(.) DF f
o (.) PCUo(.)

1 0.4286 0.4286 1.0000 2.6250 2.7500 0.9545

2 1.0000 1.0000 1.0000 1.0000 2.5000 0.4000

3 0.9000 0.9000 1.0000 1.1538 1.5000 0.7692

4 1.0000 1.0000 1.0000 1.3333 1.3333 1.0000

5 0.6429 0.6429 1.0000 1.5000 1.5000 1.0000

6 1.0000 0.7500 1.3333 1.0000 1.5000 0.6667

7 0.5455 0.5455 1.0000 1.0000 1.0000 1.0000

8 0.9500 0.6000 1.5833 1.0577 1.3750 0.7692

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.9333 0.5000 1.8667 1.0400 1.2000 0.8667

11 1.0000 0.6000 1.6667 1.0000 1.2000 0.8333

12 0.7750 0.3750 2.0667 1.0750 1.1000 0.9773

13 0.8000 0.3000 2.6667 1.0000 1.0000 1.0000

14 1.0000 0.5000 2.0000 1.0000 1.0000 1.0000

15 1.0000 0.4286 2.3333 1.0000 1.0000 1.0000

16 1.0000 0.3000 3.3333 1.0000 1.0000 1.0000

Table 3 Graph plant capacity utilization, graph input- and output-oriented plant capacity utilization, and
components

GPCU (.) GPCUi (.) GPCUo(.)

E f
G (.) ESR

G (.) GPCU (.) GDFSR
i (.) = λ̄ GPCUi (.) GDFSR

o (.) GPCUo(.) =
APCU (., λ̄)

1 2.9815 2.9815 1.0000 0.7714 0.5556 2.3000 1.1413

2 1.0000 1.1786 0.8485 1.8667 0.5357 2.2000 0.4545

3 1.1538 1.2069 0.9560 1.1600 0.7759 1.4000 0.8242

4 1.3333 1.3333 1.0000 1.0000 1.0000 1.3333 1.0000

5 1.6897 1.6897 1.0000 0.8286 0.7759 1.4000 1.0714

6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

7 1.8333 1.8333 1.0000 0.5455 1.0000 1.0000 1.0000

8 1.0577 1.0648 0.9933 1.0800 0.8796 1.1500 0.9197

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 1.0714 1.1077 0.9673 0.8667 1.0769 0.9600 1.0833

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

12 1.2903 1.3630 0.9467 0.6750 1.1481 0.9200 1.1685

13 1.2500 1.5714 0.7955 0.5600 1.4286 0.8800 1.1364

14 1.0000 1.0000 1.0000 0.6667 1.5000 0.6667 1.5000

15 1.0000 1.1667 0.8571 0.7143 1.4000 0.8333 1.2000

16 1.0000 1.5385 0.6500 0.5200 1.9231 0.8000 1.2500
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Fig. 1 Visualization of the different components of PCUi , PCUo and GPCU applied to observation 12

for the values of ϕ∗ and θ∗. Observe in Fig. 1 the original observations (gray solid circles
with labels referring to the observation numbering) with fixed input smaller than or equal to
the fixed input of observation 12 and the corresponding frontier. Applying (11) to compute
DFSR

i (x f , xv, y) on this observation results in the efficiency value 0.7750 with ϕ∗ = 1
and θ∗ = 0.7750. Consequently, the variable input is reduced to 6.2 without expanding
the output. The resulting (xv, y)-combination is depicted by the black circle (◦) located
on the frontier. Applying (9) to compute DFSR

i (x f , xv, 0) yields 0.3750 with ϕ∗ = 0 and
θ∗ = 0.3750. So, by allowing to reduce outputs to the level of zero, the variable input can be
reduced further from 6.2 to 3. Combining the optimal variable input and output level realizes
the point visualized by a diagonal cross (×). Since there is only one variable input and one
output in this example, PCUi (x, x f , y) boils down to the ratio of the horizontal distance
from the point ◦ to the y-axis over the horizontal distance from the point × to the y-axis.

Using (10) to compute DFo(x, y) for observation 12 leads to the optimal value 1.0750
with ϕ∗ = 1.0750 and θ∗ = 1. Now, the output is maximally increased without reducing the
variable input. The corresponding optimal (xv, y)-combination is visualized by the black box
(�) in Fig. 1. Using (8) to determine DF f

o (x f , y) results in the optimal value 1.1000 with
ϕ∗ = 1.1000 and θ∗ = 1.2813. So, by allowing an increase of the variable input, the output
can be increased by this factor 1.1000. The corresponding optimal (xv, y)-combination is
visualized by the asterisk (�) at (10.25, 5.5). Since there is only one variable input and one
output in this example, PCUo(x, x f , y) corresponds with the ratio of the vertical distance
from the point � to the xv-axis over the vertical distance from the point � to the xv-axis.

Computing the sub-vector graph efficiency E f
G(x f , xv, y) defined by (16) for observation

12 leads to the optimal value 1.2903 with ϕ∗ = 1 and θ∗ = 0.7750. Obviously, the maximal
ratio ϕ∗

θ∗ is realized by reducing the variable input and keeping the output at the same level. This
results in the optimal (xv, y)-combination depicted in Fig. 1 by the cross (+). Note that this
point coincides for observation 12 with the optimal point realized by DFSR

i (x f , xv, y) and
visualized by◦. Using (17), the sub-vector graph efficiency ESR

G (x f , xv, y) for observation
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yields the optimal ratio ϕ∗
θ∗ = 1.3630 with ϕ∗ = 0.9200 and θ∗ = 0.6750. Thus, the optimal

ratio is obtained by reducing both the variable input and the output. The corresponding
optimal (xv, y)-combination is visualized by the diamond () at (5.4, 4.6). The ratio of the
ratios ϕ∗

θ∗ mentioned above yields GPCU (x, x f , y) = 0.9467.
We explore the differences between these graph plant capacity notions in more detail in

the empirical illustration in the next Sect. 6.

6 Empirical illustration

6.1 Secondary data set

For an overview of the models used in this empirical illustration assuming a convex non-
parametric technology under VRS, we refer to online supplementary material B. For the
sake of replication by the reader, we select a secondary data set from the Journal of Applied
Econometrics Data Archive10 and opt for an unbalanced panel of three years of French fruit
producers from Ivaldi et al. (1996) based on annual accounting data collected in a survey.
These farms were selected on mainly two criteria: (i) the apple production must be positive,
and (ii) the orchard acreage is five acres at least. This short panel covers three successive years
from1984 to1986.The technology consists of three aggregate inputs producing twoaggregate
outputs. The three inputs are (i) capital (including land), (ii) labor, and (iii)materials;while the
two outputs are (i) the apple production, and (ii) an aggregate of other products. Descriptive
statistics for the 405 observations in total and details on the definitions of all variables are
available in Appendix 2 of Ivaldi et al. (1996). Note that the short length of the panel (just
three years) warrants the use of an intertemporal technology that essentially ignores any
eventual technical change.

6.2 Empirical results

The descriptive statistics for the traditional input- and output-oriented plant capacity utiliza-
tion measures as well as their components are reported in Table 4. We report the average, the
standard deviation, and the minima and maxima depending on the context. These descriptive
statistics seem to confirm that both concepts clearly differ from one another (see Cesaroni
et al. 2017 for a detailed empirical analysis confirming this observation).

The descriptive statistics for new graph plant capacity concept GPCU (x, x f , y) as
well as its special input- and output-oriented graph versions GPCUi (x, x f , y) and
GPCUo(x, x f , y) are reported in Table 5. Also the component efficiency measures are
listed in the same table. We can make the following observations. First, the descriptive statis-
tics indicate that all three graph capacity notions in general seem to differ. Furthermore,
comparing the minimum and maximum of GPCUi (x, x f , y) shows that it lacks a natural
bound. Making the same comparison for GPCUo(x, x f , y) equally reveals the lack of a
natural bound.

Second, note that based on Proposition 4.2, GPCUo(x, x f , y) = APCUo(x, x f , y, λ̄)

and GDFo(x, x f , y) = ADF f
o (x, x f , y, λ̄) . Hence, the two last columns of Table 5 report

the biased and unbiased attainable output-oriented plant capacity utilisation at level λ̄ = θ∗,
respectively, where θ∗ is the optimal value of θ in model (17). Hence, λ̄ = GDFSR

i (x, x f , y)

10 See the web site: http://qed.econ.queensu.ca/jae/.
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Table 4 Descriptive statistics of input- and output-oriented plant capacity utilization

PCUi (.) PCUo(.)

DFSR
i (x f , xv, y) DFSR

i (x f , xv, 0) PCUi (.) DFo(.) DF f
o (.) PCUo(.)

Average 0.5881 0.4233 1.7337 3.4924 5.4149 0.7105

SD 0.1924 0.1950 1.6360 2.6312 4.6781 0.2211

Minimum 0.1868 0.0473 1 1 1 0.0701

Maximum 1 1 21.1414 16.2869 35.2953 1

which is reported in the fifth column of Table 5. While the attainable output-oriented plant
capacity utilization APCUo(x, x f , y, λ̄) depends on the attainable level λ̄ determined by
the decision maker, the defined attainability in Definition 4.2 (i.e., GPCUo(x, x f , y) =
APCUo(x, x f , y, λ̄)) can be a good choice to determine some reasonable bound on the
available variable inputs. As can be seen in the fifth column of Table 5, the average of
attainability level λ̄ is 1.0463 with the standard deviation 0.4366. With this proposed attain-
ability level λ̄ we obtain on average a 4.2375 output magnification, while the maximum
increase in outputs amounts to 33.1387 times. It suffices to put this in contrast with the
biased plant capacity measure DF f

o (x, x f , y) in Table 4 (column 6). There is more variation
in DF f

o (x, x f , y) as indicated by the standard deviation and the range is even bigger: the
maximum increase in outputs amounts to 35.2953 times. Our approach clearly suffers less
from such extreme magnifications and therefore remains somewhat more attainable based
on this output magnification.

From the viewpoint of input magnification, Kerstens et al. (2019b) define the following
critical point Up as follows:

Up = DFSR
i (x f

p , xv
p, DF f

o (x f
p , yp)yp), (33)

where DF f
o (x f

p , yp) and DFSR
i (x f

p , xv
p, yp) are defined before in (3) and (4), respectively.

It can be interpreted as the minimal expansion of variable inputs needed to produce the
maximum plant capacity outputs. By solving model (33), the average of critical point Up

is 2.597 with a standard deviation of 1.621. Also, its minimum and maximum are 0.513
and 8.544, respectively. Based on the average of this critical point Up one needs about 2.60
times more variable inputs than currently in use to reach maximum plant capacity outputs,
while one can needs magnifying variable inputs by only a factor 1.0463 in Definition 4.2
(i.e., GPCUo(x, x f , y) = APCUo(x, x f , y, λ̄)). Note that the variation in this factorUp is
rather substantial. Themaximal magnification factor of 8.544 is clearly implausible in reality.
These very strong requirements on the availability of variable inputs clearly cast doubts on
the plausibility of the traditional output-oriented plant capacity measure (see Kerstens et al.
2019b for more details).

To test whether any of the above results are statistically significant, we choose the formal
test statistic proposed by Li (1996) and refined by Fan and Ullah (1999) and Li et al. (2009)
(henceforth Li-test). This Li-test has the null hypothesis that both distributions are equal for
a given efficiency score or plant capacity notion. Its alternative hypothesis is simply that
both distributions differ. This test is valid for both dependent and independent variables:
dependency is a characteristic of frontier estimators, since frontier efficiency depend on
sample size, among others. Table 6 reports the Li-test statistics for all plant capacity concepts
discussed in this contribution. A glance at Table 6 shows that all plant capacity concepts
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Table 6 Li-test among all unbiased plant capacity notions

PCUi (.) PCUo(.) GPCU (.) GPCUi (.) GPCUo(.)

PCUi (.) 74.606*** 143.6798*** 124.5037*** 17.558***

PCUo(.) 74.606*** 71.1327*** 21.742*** 20.6112***

GPCU (.) 143.6798*** 71.1327*** 145.117*** 110.6579***

GPCUi (.) 124.5037*** 21.742*** 145.117*** 55.832***

GPCUo(.) 17.558*** 20.6112*** 110.6579*** 55.832***

Li test: critical values at 1% level = 2.33(***); 5% level = 1.64(**); 10%level = 1.28(*)

follow two by two significantly different distributions and thus capture an independent part
of reality.

7 Conclusions

While the output-oriented plant capacity concept has been around for about three decades
and has been the basis for quite some empirical applications, the input-oriented plant capacity
concept is of more recent date. However, this original output-oriented plant capacity utiliza-
tion suffers from the so-called attainability issue, which has led Kerstens et al. (2019b) to
define an attainable output-oriented plant capacity notion. This contribution has taken a next
logical step by looking for graph efficiency measures to define some new graph-oriented
plant capacity concepts. Apart from some new definitions, relations between these capacity
concepts have been established. A small numerical example has illustrated these various con-
cepts and an empirical application on a secondary data set has revealed the factual differences
between these different notions.

We end by outlining some potential avenues for future research. First, this contribution has
focused on what has been called short-run plant capacity concepts (see Cesaroni et al. 2019).
Recently, Cesaroni et al. (2019) also define long-run output- and input-oriented plant capacity
concepts. It remains to be seen whether our analysis can be extended to these long-run plant
capacity concepts as well. Second, convexity has been shown to have an impact on input-and
output-oriented plant capacity measures (see Cesaroni et al. 2017). Furthermore, convexity
turns out to affect long-run plant capacity concepts and alternative cost-based capacity con-
cepts as well (e.g., Kerstens et al. 2019a). Therefore, it is certainly useful to assess the impact
of convexity on these new graph-oriented plant capacity measures. Third, there are some
indications that slacks may play a role in the measurement of plant capacity utilization (e.g.,
Dupont et al. 2002, orVestergaard et al. 2003).Of course, on a priori grounds onewould expect
that slacks play less a role for graph-oriented plant capacity that are more likely to project
on the efficient subset of technology than for output- or input-oriented plant capacity notions
that are more likely to project on the isoquant. But, this conjecture certainly merits further
attention. Fourth, the current lack of bounds for the input- and output-oriented versions of our
graph plant capacity measure deserves to be remedied. Perhaps the use of alternative graph or
non-oriented efficiency measures (see Russell and Schworm 2011) may provide a way out.
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